Telegram Group & Telegram Channel
В каких случаях вы будете применять ROC-кривую для оценки модели?

ROC-кривая (receiver operating characteristics curve) базируется на следующих метриках:
TPR (true positive rate) — доля положительных объектов, правильно предсказанных положительными;
▪️FPR (false positive rate) — доля отрицательных объектов, неправильно предсказанных положительными.

Именно в осях TPR/FPR и строится кривая. Эти метрики зависят от порога. Порогом мы называем значение, при котором по выходу модели решаем, к какому классу отнести объект. Так, выбор порога позволяет нам регулировать ошибки на объектах обоих классов. Его изменение позволяет увидеть, как меняются значения TPR и FPR, что и отражается на ROC-кривой.

Известно, что чем лучше модель разделяет два класса, тем больше площадь (area under curve) под ROC-кривой. Мы можем использовать эту площадь в качестве метрики и называть её AUC.

В каких случаях лучше отдать предпочтение этой метрике? Допустим, у нас есть клиент — сотовый оператор, который хочет знать, будет ли клиент пользоваться его услугами через месяц. При этом компании интересно упорядочить клиентов по вероятности прекращения обслуживания. Именно в таких задачах, где нам важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC. Кроме того, метрика полезна в условиях несбалансированных классов или когда стоимость разных типов ошибок различна.

#машинноe_обучение



tg-me.com/ds_interview_lib/301
Create:
Last Update:

В каких случаях вы будете применять ROC-кривую для оценки модели?

ROC-кривая (receiver operating characteristics curve) базируется на следующих метриках:
TPR (true positive rate) — доля положительных объектов, правильно предсказанных положительными;
▪️FPR (false positive rate) — доля отрицательных объектов, неправильно предсказанных положительными.

Именно в осях TPR/FPR и строится кривая. Эти метрики зависят от порога. Порогом мы называем значение, при котором по выходу модели решаем, к какому классу отнести объект. Так, выбор порога позволяет нам регулировать ошибки на объектах обоих классов. Его изменение позволяет увидеть, как меняются значения TPR и FPR, что и отражается на ROC-кривой.

Известно, что чем лучше модель разделяет два класса, тем больше площадь (area under curve) под ROC-кривой. Мы можем использовать эту площадь в качестве метрики и называть её AUC.

В каких случаях лучше отдать предпочтение этой метрике? Допустим, у нас есть клиент — сотовый оператор, который хочет знать, будет ли клиент пользоваться его услугами через месяц. При этом компании интересно упорядочить клиентов по вероятности прекращения обслуживания. Именно в таких задачах, где нам важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC. Кроме того, метрика полезна в условиях несбалансированных классов или когда стоимость разных типов ошибок различна.

#машинноe_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/301

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Библиотека собеса по Data Science | вопросы с собеседований from ca


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA